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Abstract—Marginalized particle filter is a stochastic filter
combining Kalman filters with particle filters. It decomposes the
model into linear and nonlinear part and applies the Kalman
filter for the former and the particle filter for the latter. Its
application in sensorless control of permanent magnet syn-
chronous motor (PMSM) drives is based on separate treatment
of the state variables: the rotor position is represented by a
set of samples (particles), and the rotor speed is estimated by
the Kalman filters associated with each sample. In effect, this
allows to represent accurately the inherent non-Gaussianity and
nonlinearity of the model. We show that the resulting filter is
capable to estimate the rotor position in the full speed range,
including the standstill. Analysis of the filter performance is
presented on open-loop off-line analysis of data recorded on a
drive prototype. Execution time of optimized implementation of
the algorithm for six particles in DSP is comparable to that of the
Extended Kalman filter for full state-space model. Closed-loop
performance of the filter (a sensorless drive control) is evaluated
on developed drive prototype of rated power of 10.7kW.

I. INTRODUCTION

Sensorless control of an ac drive—i.e. its operation without
either a rotor position and/or speed sensor—is divided into
two main directions: model-based approach and anisotropy
approach. The model-based approach ranges from MRAS [1],
through neural networks [2] to the extended Kalman Filter
(EKF) [3] and the unscented Kalman filter [4]. The anisotropy
based approach is based on injecting high-frequency signals
into the input stator voltage and evaluation of their response
using stator current of the drive [5]. The model based ap-
proaches are more reliable in the high speed regimes while
the anisotropy based approach is superior in the low speed
range and especially in the standstill. This is the reason for
derivation of combined approaches [6] and switching schemes
(often called hybrid estimators) [7].

Following the analysis of the extended Kalman filter [8],
we conjecture that the reason why contemporary model-
based approaches can not perform well in zero speed is their
incapability to handle non-Gaussian distributions that arise
in standstill of the drive. Therefore, we seek an estimation
method that is capable to handle them. The most general
methods for estimation of non-linear non-Gaussian systems
are the sequential Monte Carlo methods, also known as the
particle filters [9]. However, their computational demands are
prohibitive on common hardware used for control of ac motor
drives. In this paper, we assume Gaussian distributed errors on

the state-space model, however we represent unknown position
of the rotor by an empirical distribution. Such a system is
ready to be estimated by the marginalized particle filter, [10],
also known as the Rao-Blackwellized particle filter [9].

II. MATHEMATICAL MODEL OF PMSM

A commonly used model of a PMSM is mathematical model
in rotating reference frame linked to a rotor flux linkage vector
discretized by simple first-order Euler formula for time step
∆t:

id,t+1 = adid,t + bdiq,tωt + cdud,t + εd,t, (1)
iq,t+1 = aqiq,t − fqωt − bqid,tωt + cquq,t + εq,t, (2)

ωme,t+1 = ωme,t + εω,t, (3)
ϑe,t+1 = ϑe,t + ωme,t∆t+ εϑ,t. (4)

Here, id, iq , ud and uq represent components of stator current
and voltage vector in the rotating reference frame, respectively;
ωme is electrical rotor speed and ϑe is electrical rotor position.
Constants ad = (1 − Rs

Lsd
∆t), aq = (1 − Rs

Lsq
∆t) differ

in the used stator inductance Lsd and Lsq , respectively, so
do bd =

Lsq

Lsd
∆t, bq = Lsd

Lsq
∆t, cd = ∆t

Lsd
and cq = ∆t

Lsq
;

Rsis a stator resistance. fq =
Ψpm

Lsq
∆t, where Ψpm is the

flux linkage excited by permanent magnets on the rotor, and
∆t is the sampling period. Simplified equation (3) considers
“high” moment of inertia which means that we assume that the
mechanical time constant is much longer than the sampling
period (this assumption is fulfilled in many applications).
Noise terms εd,t, εq,t, εω,t, εϑ,t, aggregate errors caused by
inaccurate discretization, uncertainties in parameters (e.g. due
to temperature changes, saturation), unobserved physical ef-
fects (such as the unknown load, dead-time effects, non-linear
voltage drops on power electronics devices).

Equations (1)–(4) represent non-linear state-space model
of PMSM with state vector xt = [id,t, iq,t, ωme,t, ϑe,t]. Tra-
ditionally all noise terms ε were assumed to be Gaussian
distributed to achieve consistency with the extended Kalman
filter assumptions. Generally it is assumed that the noise
between the state variables is uncorrelated and its variance
is constant, Q = diag(qi, qi, qω, qϑ).

In sensorless control it is assumed that only two state
variables, iα,t and iβ,t are measured via observations iα,t and



iβ,t, that are transformed into the rotating reference frame as
follows:

id,t = iα,t cosϑe,t + iβ,t sinϑe,t + εd,t, (5)

iq,t = −iα,t sinϑe,t + iβ,t cosϑe,t + εq,t, . (6)

The measurement errors are assumed to be non-correlated
Gaussian with variances var(εd,t) = ri, var(εq,t) = ri.

A. Reduced order model

Model (1)-(4) is a proper state-space model of the drive,
however its evaluation may be too computationally demanding.
Computational requirements motivate research of models with
reduced dimension of the state, [11]. Following [12], we
consider only the electrical speed and rotor position to be the
state variables xt = [ωme,t, ϑe,t] with state evolution equations
(3)–(4). A minor drawback of this formulation is that the
current observations id,t and iq,t are informative only about
ωme,t−1 and ϑe,t−1. In effect, the model allows to estimate
only delayed values of the state. However, the current state
estimates can be well approximated by predicted values xt
obtained by (3)–(4).

B. Non-Gaussian model

Application of the EKF (and also UKF) is based on two
assumptions: (i) the noise distributions ε are Gaussian, and
(ii) the estimates of the unknown state are represented by their
mean value and variance. The first assumption can be justified
by a conservative choice of the noise variance. The second
assumption is however problematic for the following reasons:

1) The rotor position is restricted to 〈−π, π〉, contradicting
the Gaussian assumption of infinite support.

2) Expected value of ϑe for a Gaussian distribution is
always on the unit circle.

3) For any state values ωme,t, ϑe the inverse values
−ωme,t, ϑe+π yields very similar output (5)–(6) in low
speed region. These two modes are hard to distinguish
and a Gaussian estimator must choose one of them
without sufficient information.

The first two issues can be resolved using truncation of the
Gaussian on the interval 〈−π, π〉, and the third by using
a mixture of Gaussian. However, such extensions increase
complexity of the estimation algorithms. Therefore, we seek
a representation of estimates that allows non-conflicting de-
scription of the state uncertainty.

III. MARGINALIZED PARTICLE FILTERING

Marginalized particle filtering is a technique of Bayesian
filtering, where all unknowns are represented by probability
density functions (distributions). By Bayesian Filtering we
mean the recursive evaluation of the filtering distribution,
p(xt|y1:t), using Bayes rule:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
, (7)

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (8)

where p(x1|y0) is the prior distribution, and y1:t = [y1, . . . , yt]
denotes the set of all observations.

Equations (7)–(8) are analytically tractable only for a lim-
ited set of models. The most notable example of an analytically
tractable model is linear Gaussian for which (7)–(8) are
equivalent to the Kalman filter. For other models, (7)–(8) need
to be evaluated approximately.

A. Particle filtering

The particle filtering is based on approximation of the
posterior (7) by an empirical probability density function

p(x1:t|y1:t) ≈
N∑
i=1

w
(i)
t δ(x1:t − x(i)

1:t), (9)

where x
(i)
1:t, i = 1, . . . , N , are samples of the state space

trajectory. Assimilation of the measured data is then achieved
via sampling-importance-resampling procedure, where the
weights can be computed recursively,

w
(i)
t ∝ w

(i)
t−1

p(yt|xt)p(xt|xt−1)

q(xt|yt)
. (10)

Good proposal function and resampling strategy are necessary
steps preventing degeneracy of the particle filter (10), [9].

The main advantage of this approach is its ability to
approximate the filtering problem for non-linear non-Gaussian
systems with an arbitrary accuracy. The main disadvantage is
that for complex problems, the number of particles N has to
be rather large to achieve good results.

B. Marginalized particle filtering (MPF) theory

Approximation (9) is unnecessary if the system has a linear
Gaussian part [10]. In such a case, it is possible to split the
state into linear and non-linear part, xt = [xlt, x

n
t ], such that

xlt+1 = A(xnt )xlt +B(xnt )ut + εl,t, (11)
xnt+1 = f(xt, ut, εn,t), (12)

yt = C(xnt )xlt +Dut + εy,t. (13)

Here, εl,t and εy,t are assumed to be Gaussian-distributed
with zero mean known covariance matrix. Function f() is
an arbitrary non-linearity and εn,t can have an arbitrary
distribution. Note that if xnt was known, equations (11) and
(13) form a linear Gaussian model that can be estimated by
the Kalman filter. The resulting estimate would be in the form
of Gaussian density with mean and covariance dependent on
the (known) non-linear state.

The idea of the MPF is to approximate the posterior density
of the non-linear part by the empirical density (9). The full
posterior density is then approximated by the chain rule of
probability calculus as follows:

p(xlt, x
n
t |y1:t) = p(xlt|xn1:t, y1:t)p(x

n
t |y1:t),

=

n∑
i=1

w
(i)
t N (x̂

l(i)
t , P

(i)
t )δ(x

n(i)
t − xnt ).

Here, xn(i)
t , i = 1, . . . n, are the samples from the non-linear

state and N (x̂
l(i)
t , P

(i)
t ) is the posterior density of the ith



Initialize: generate ω(i)
0 , ϑ

(i)
0 and set w(i)

0 = 1/N .
On-line: At each time step:

1) For each particle:
a) Generate new ϑ

(i)
t using (4), and compute d-q

transformation (5)–(6),
b) Execute the Kalman filter (14)–(15) to obtain

ω
(i)
t , P

(i)
t and p(yt|y1:t−1, ϑ

(i)
me),

2) Evaluate weights wt (16),
3) Resample the particles using deterministic resampling.

Figure 1. Algorithm of the MPF for the reduced order model of the PMSM
drive.

Kalman filter associated with the ith particle of the non-linear
state.

C. MPF for the PMSM drive

We note that for a known value of ϑe,t, the state variable in
the PMSM model is ωme,t, with state evolution model (3) and
observation equations (1)–(2). The model is consistent with
form (11)–(13) under assignments:

A = 1,

B = 0,

yt = [id,t − adid,t−1 − cdud,t−1,

iq,t − aqiq,t−1 − cquq,t−1]T ,

C = [bdiq,t,−(fq + bqid,t)]
T ,

D = [0, 0]

Applying the standard Kalman filter equations to the system
above, we obtain equations for estimates of the rotor speed for
a given particle of the rotor position ϑ(i)

e,t as follows:

ω̂
(i)
me,t = ω̂

(i)
me,t−1 +K(i)

(
yt − C(i)ω̂

(i)
me,t−1

)
, (14)

K(i) = P
(i)
t−1C

(i)T ρ(i),

ρ(i) =
1

r

(
1− ζ(i)C(i)TC(i)

)
.

ζ(i) =
P

(i)
t−1

r + P
(i)
t−1C

(i)TC(i).

P
(i)
t = P

(i)
t−1

(
1−K(i)C(i)

)
+ qω. (15)

Each of these filters has associated weight

w
(i)
t ∝ p(yt, ωme|y1:t−1, ϑ

(i)
e,t)w

(i)
t−1, (16)

assuming that the transition density was used as the proposal.
The predictive likelihood needed in (16) is computed as:

p(yt|y1:t−1, ϑ
(i)
e,t) ∝√

ρ

r
exp

(
−1

2
(y − ŷ)′(

1

r
(I − ζCC ′))(y − ŷ)

)
(17)

The final MPF algorithm for the PMSM drive is summarized
in Figure 1.

Figure 2. State estimation in open-loop using MPF with N = 10 and
recorded data at ωme = 0 rad/s (standstill, locked rotor). Dashed line denotes
observed values from shaft sensors.

IV. OPEN-LOOP VALIDATION OF PROPOSED MPF

Open-loop analysis of the MPF filter was performed off-
line on a PC using data recorded on a running drive of rated
power of 10.7kW operated in sensored mode. This allows us
to tune model parameters and algorithm simplification that are
necessary for efficient implementation.

A. Parameter identification

Parameters of the drive were identified using recursive least
squares approach. The parameters of the drive were identified
to be:

ad = 0.98, aq = 0.99,

bd = 0.00013, bq = 0.00011,

cd = 0.040, cq = 0.036, (18)
fq = 0.0083,

However, it was observed that the parameters vary with
operating point of the motor. Parameter values listed in (18)
were chosen as a compromise for overall performance.

B. Standstill operation

Data recorded in standstill were measured under locked
rotor to guarantee that the rotor is not moving. For better
identifiability, the input stator voltage was injected with square
signal of frequency 500Hz. Position of the drive was estimated
using the MPF algorithm with 10 particles and covariance
matrices qω = 0.1, qϑ = 0.01, r = 0.05. Results of estimation
are displayed in Fig. 2 via position of all particles for the
rotor position (bottom row) and mean values of all Kalman
filters for the rotor speed (top row). The particles are initialized
by random draw of ϑ(i)

e from uniform distribution on interval
〈−π, π〉 , the prior estimate of rotor speed is ω̂me = 0, P0 = 1.

For better understanding of the principle, the first 0.06
seconds of the part of the estimation is displayed in the right



Figure 3. State estimation in open-loop using MPF with N = 10 and
recorded data at fixed electrical rotor speed of ωme = 62 rad/s. Dashed line
denotes measured values of the state variables from sensors.

column of Fig. 2. Note on the detail of the rotor position, that
the particles evolve from the initial positions by random walk
forming a typical random walk paths. Thickness of the paths is
given by the number of particles associated with the track. The
track ends when the associated particle weights are so small
that the resampling operation does not copy the particle to
the next step. After circa 0.04s, all particles are concentrated
around the observed value. The second longest track in the
detail view of the position is around the second mode of
solution at [ϑe + π,−ωme] (Section II-B). Occasionally, for
different realization of the particles, this second mode becomes
dominant and all particles concentrate around it. This problem
is also known in the traditional hf signal injection methods.

C. Constant rotor speed

The same experiment was performed with data recorded
on the drive prototype running at fixed electrical rotor speed
of ωme= 62 rad/s. The number of particles and the initial
conditions were the same as those in Section IV-B. Results of
estimation are displayed in Fig. 3 via particles ϑ(i)

e and mean
values of the associated Kalman filters ω̂(i)

me. Note that even
though the initial conditions are far from the true value, the
filter is able to reach the true value within 0.06s. The second
mode of solution is also visible, however, in this case, it is
reliably removed after less then 0.01 second.

V. SENSORLESS CONTROL OF PMSM DRIVE

A. Implementation of MPF

Since the output of the MPF is in the form of probability
distribution, we need to find an estimate for the control design.
In representation (9), the expected value of ϑe does not have

a good meaning. Therefore, we use

ϑ̂e,t = arctan

∑N
i=1 w

(i)
t sinϑ

(i)
e∑N

i=1 w
(i)
t cosϑ

(i)
e

, (19)

ω̂me,t =

N∑
i=1

w
(i)
t ω

(i)
t . (20)

These estimates are inputs to the employed conventional vector
control algorithm of the drive described in more details in the
following section.

B. Drive Control Under Tests

Configuration of the investigated sensorless drive control
is displayed in Fig. 4. The drive control is based on the
conventional vector control in Cartesian coordinates in rotating
reference frame (d,q) linked to a rotor flux linkage vector.
An input to the drive controller is the commanded electrical
rotor speed ωmew which is controlled by the PI controller
Rω . Output of Rω is the demanded torque component Isqw
of the stator current vector. The torque (Isqw) and flux (Isdw)
currents are controlled by the PI controllers RIsd and RIsq,
respectively. The flux weakening is secured by the PI controller
RUrm which controls the PWM modulation depth (signal Urm)
and commands the flux current Isdw. The current controllers
are supported by block “voltage calculation” (often referred
to as “decoupling”) which computes the components of the
required stator voltage vector in (d,q) frame using a simplified
model of the PMSM in steady-state. The components of the
stator current vector (isα, isβ) and the reconstructed stator
voltage vector usα, usβ in the stationary reference frame are
inputs to the MPF. The stator voltage vector is reconstructed
from the measured dc-link voltage and known switching
combination of the voltage-source converter. The MPF output
is the estimated electrical rotor speed ω̂me and the electrical
rotor position ϑ̂e. The drive can be operated in two modes: (i)
sensored mode (where the drive control uses the rotor speed
and position from the rotor position sensor and the MPF is
operated in open-loop), and (ii) sensorless mode (where drive
control uses the MPF output and hence, MPF is operated in
closed-loop). The voltage-source converter employs a third-
harmonic injected PWM with carrier frequency of 4kHz. The
sampling frequency of the MPF as well as of the drive control
has been set to 125µs.

The covariance matrices of all tested variants of MPF were
considered to be time- and state-invariant and were obtained
by manual tuning. The proposed sensorless drive control with
presented algorithm of the MPF (Fig. 4) has been tested on
a developed prototype of PMSM drive of rated power of
10.7kW.

VI. EXPERIMENTAL RESULTS

The developed prototype of a PMSM drive was during
the experimental tests operated in both sensored and sen-
sorless mode. All results are obtained with MPF with 5
particles and covariance matrices qω = 0.1, qϑ = 0.003,
r = 0.05. Execution time of this MPF configuration on the TI



Figure 4. Investigated sensorless control of a PMSM drive with the proposed MPF

TMS320F28335 processor with core clock of 150 MHz was
47µs, with additional 12µs for computation of the expected
value (19)–(20). Target applications for our research have
sampling periods in the range of 125 µs to 500 µs (switching
frequency of 2 - 4kHz). Thus, the proposed filter takes less
than 48 % of the microprocessor controller load which is
comparable to estimators employed in industrial applications
at present.

In the first experiment, the drive was operated in sensored
mode under a rectangular speed profile with the commanded
mechanical rotor speed of ±30rpm (electrical rotor speed
command fmew = ±2Hz). Results of estimation of the MPF
are displayed in Fig. 5. The drive was started with arbitrary
(non-zero) initial rotor position. The figure explores the initial
rotor position and speed estimation by MPF, which can be
seen in detail in left hand part of Fig. 5, after that the drive
accelerates from standstill to 30 rpm. The right hand part
of the Fig. 5 analyzes the step change of commanded rotor
speed from 0 to 30 rpm and speed reversal from 30 rpm to
-30 rpm. Note that an acceptable initial estimate of the rotor
position was found almost immediately, due to the resampling
operation. The estimate then slowly converges to the true
position via the introduced random walk model. However, this
behavior is not reliable, due to a small number of particles
and the presence of the second mode of solution (explained in
Section II-B and demonstrated in Fig. 2 and 3 in simulation).
Estimation of the step change of the rotor speed and all
speed reversal operations are reliable with average error of
the electrical rotor position below 15 degrees.

In the second presented experiment, the drive was operated
in sensoreless mode with expectations (ϑ̂e) and (ω̂me) as inputs
to the vector control. The test scenario was the same like in
the sensored mode. The commanded mechanical rotor speed
followed a rectangular speed profile of ±50 rpm (electrical
rotor speed command fmew = ±3.3Hz). The state estimates of
the MPF are displayed in Fig. 6 in comparison to the observed

values. The drive was started with arbitrary (non-zero) initial
rotor position. The figure shows the initial rotor position and
speed estimation by MPF (see left hand part of Fig. 6), after
that the drive accelerates from standstill to 50 rpm. The right
hand part of the Fig. 6 displays the drive response to the
step change of commanded rotor speed from 0 to 50 rpm
and speed reversal from 50 rpm to -50 rpm. Similarly to the
sensored mode, the initial estimate of the rotor position is
found almost immediately. Operation of the drive in sensorless
mode is reliable from 20 rpm, with average error of the electric
rotor position estimation below 25 degrees.

VII. CONCLUSION

A new approach using marginalized particle filter was
proposed and applied to the task of sensorless control of
PMSM drives as the first non-Gaussian stochastic filter. The
filter is using multiple points of linearization, which improves
robustness of estimation in critical operating regimes. We have
shown in open-loop (sensored) mode that it has the potential
to correctly estimate position of the rotor even at zero speed.
This outlines the potential of the MPF to replace in full
speed range the currently used hybrid strategies combining
hf injections and model based approaches. However, further
work is required to achieve reliable operation of the MPF at
standstill. The tested implementation uses only 5 particles but
it still outperforms all variants of the Gaussian filters tested
on the same drive prototype.
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Figure 5. Experimental result – sensored mode of the drive control (MPF operated in open-loop): Initial rotor position and speed estimation and step changes
of commanded mechanical rotor speed of ±30 rpm. Detail of initial rotor position and speed estimation (left) and acceleration from standstill to 30 rpm and
speed reversal to -30 rpm (right). ch1: electrical rotor position (sensor) [144 deg/div], ch2: estimated electrical rotor position (MPF) [144 deg/div], ch3: rotor
speed (sensor) [30 rpm/div], ch4: estimated rotor speed (MPF) [30 rpm/div], time scale: 400 ms/div

Figure 6. Experimental result – sensorless mode of the drive control: Initial rotor position and speed estimation and step changes of commanded mechanical
rotor speed of ±50 rpm. Detail of initial rotor position and speed estimation (left) and acceleration from standstill to 50 rpm and speed reversal to -50
rpm (right). ch1: electrical rotor position (sensor) [144 deg/div], ch2: estimated electrical rotor position (MPF) [144 deg/div], ch3: rotor speed (sensor) [30
rpm/div], ch4: estimated rotor speed (MPF) [30 rpm/div], time scale: 400 ms/div
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